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Abstract

To advance healthcare, operations research should address two concurrent goals: (1) Develop

new algorithms for decision-making in a data-rich environment that answer key concerns from

practitioners, e.g., scalability and interpretability. (2) Put its theory to the test of practice,

to ensure a path towards impact. Accordingly, this thesis comprises two parts. We develop

new algorithms for large-scale discrete optimization problems, with a focus on machine learning

under sparsity, and implement a predictive and prescriptive approach to improve patient flow

management at a large academic hospital.

1 Introduction

“When I think of the hospital of the future, I think of a bunch of people sitting in a room

full of screens and phones,”

says Toby Cosgrove, CEO of Cleveland Clinic [78]. Indeed, all major healthcare providers are

rethinking how hospitals work, for the gap between populations’ health needs and the care offered

by systems organized around hospitals has grown ever wider. In the next ten years, hospitals will

operate like air-traffic control centers whose role is to coordinate care across multiple facilities.

To support this transition and transform our healthcare system, research in operations and

analytics should address two concurrent goals: First, develop new methods and algorithms for

decision-making in a data rich environment, which answer key concerns from practitioners and

regulators, such as reliability, interpretability and fairness. Second, put its models and algorithms to
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the test of practice, to ensure a path towards implementation and impact. Accordingly, this thesis

comprises two parts, which serve these two complementary objectives.

1.1 Methodological challenges in machine learning and optimization

To address the needs of practitioners in high-stake industries like healthcare, we highlight two broad

research questions where algorithmic advances are needed: sparsity and interpretability in machine

learning; and large-scale discrete optimization.

Sparsity and interpretability in machine learning We use models to improve our knowledge

of a given phenomenon. While the amount of available data has exploded in the past decades, human

cognitive ability to understand complex models has remained limited. Hence, the identification of

important variables within large data sets of high dimensionality has become increasingly valuable

to practitioners and decision makers. Correspondingly, the notion of sparsity, i.e., the property of a

model to involve a limited number of covariates, is cardinal in high-dimensional statistics.

Algorithms for large-scale discrete optimization The combinatorial component of sparse

statistical learning problems is also widely present in the operations research literature at large.

Indeed, start-up costs in machine scheduling, financial transaction costs, cardinality constraints,

and fixed costs in facility location problems, among others, can all be modeled with binary decision

variables. In particular, many practically relevant optimization problems involve logical relationship

between some continuous variables x and binary variables z of the form “x = 0 if z = 0”. In addition

to the presence logical constraints, real-world instances of the OR/MS problems are increasingly

larger in size, driven by the widespread adoption of connected devices and remote monitoring.

1.2 Practical challenges for analytics in healthcare

To improve the quality of care and alleviate the burden on clinicians and hospital staff, healthcare

operations practitioners widely agree on the need to shift from isolated improvement in each individual

units to a global coordination scheme across the entire hospital. For instance, [67] identified five

guiding principles, among which the utilization of advanced data analytics to “forecast patient
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demand patterns”, and adopt “a system-wide approach to patient flow”. In essence, they advocate

for the development of both predictive and prescriptive analytics to improve hospital operations.

However, there are unique challenges associated with healthcare analytics in practice.

Interpretability in healthcare In order to “forecast patient demand patterns”, combining

patient-level information from Electronic Health Records (EHRs) with sophisticated machine learning

techniques can provide welcome visibility on patient flows and inform hospital operations. Despite the

richness and increasing availability of data in healthcare, predictive models are not widely deployed

in practice, due to the need to create custom dataset with specific variables for each predictive task,

and the need for interpretable models.

A system view of hospital operations A system-wide approach to patient flow could

certainly improve hospital operations and lead to better health outcomes for the patients at lower

operational costs. Empirical and modeling work has helped us better understand patient flow, the

impact of operational efficiency on quality of care, and the interdependence between units. For

instance, we empirically observe that delays, a common measure of operational efficiency, lead to

negative health outcomes, and that congestion in the ED is often due to unavailability of beds in

inpatient units. Yet, day-to-day operations remain largely designed and optimized at a unit-level,

and implementing hospital-wide strategies is easier said than done.

1.3 Outline

Chapter 2, 3, and 4 present methodological contributions to the discrete optimization literature, with

particular emphasis on problems emerging from machine learning under sparsity. Chapter 5 and 6

present applications and implementation of machine learning and discrete optimization methods to

improve operations at a large academic hospital in Boston.
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2 Sparse Regression: A Discrete Optimization Perspective

The notion of sparsity, i.e., the ability to make predictions based on a limited number of covariates, has

become cardinal in statistics. The so-called cardinality constrained estimators for instance minimize

prediction error while explicitly bounding the number of input variables. Though computationally

expensive, they have been considered as a relevant benchmark in high-dimensional statistics. Indeed,

these estimators are characterized as the solution of the NP-hard problem [60]

min
w∈Rp

n∑
i=1

`(yi,w
>xi) s.t. ‖w‖0 ≤ k, (1)

where ` is an appropriate convex loss function (see Table 1 for examples). The covariates are denoted

by the matrix X ∈ Rn×p, whose rows are the x>i ’s, and the response data by y = (y1, ..., yn) ∈ Rn.

Here, ‖w‖0 := |{j : wj 6= 0}| denotes the 0-pseudo norm, i.e., the number of non-zero coefficients

of w. For decades, such problems have thus been solved using greedy heuristics, such as step-wise

regression, matching pursuits [55], or recursive feature elimination (RFE) [44]. Consequently, much

attention has been directed to convex surrogate estimators which tend to be sparse, while requiring

less computational effort. The Lasso estimator, in which the `0 pseudo-norm of w in (1) is replaced

by its `1 norm, and initially proposed by Tibshirani [80], is widely known and used. Its practical

success can be explained by three concurrent ingredients: Efficient numerical algorithms exist

[28, 39, 6], off-the-shelf implementations are publicly available [38] and recovery of the true sparsity

is theoretically guaranteed under admittedly strong assumptions on the data [83]. However, recent

works [82, 85, 33, 76, 40, 16] have pointed out several key deficiencies of the Lasso regressor in its

ability to select the true features.

Table 1: Relevant loss functions ` and their corresponding Fenchel conjugates ˆ̀, defined as ˆ̀(y, α) :=
supu αu−`(y, u). The observed data is continuous, y ∈ R, for regression and categorical, y ∈ {−1, 1},
for classification. By convention, ˆ̀ equals +∞ outside of its domain.

Method Loss `(y, u) Fenchel conjugate ˆ̀(y, α)

Ordinary Least Square 1
2
(y − u)2 1

2
α2 + yα

Logistic loss log
(
1 + e−yu

)
−yα log(−yα) + (1 + yα) log(1 + yα) for yα ∈ [−1, 0]

1-norm SVM - Hinge loss max(0, 1− yu) yα for yα ∈ [−1, 0]
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Therefore, new research in numerical algorithms for solving the exact formulation (1) directly

has flourished. Leveraging recent advances in mixed-integer solvers [12, 11], Lagrangian relaxation

[64], cyclic coordinate descent [45], or cutting-plane methods [18], these works have demonstrated

significant improvement over existing Lasso-based heuristics. Another line of research has focused

on replacing the `1 norm in the Lasso formulation by other sparsity-inducing penalties which are

less sensitive to noise or correlation between features. In particular, non-convex penalties such as

smoothly clipped absolute deviation (SCAD) [32] and minimax concave penalty (MCP) [87] have

been proposed.

Convinced that sparsity is an extremely valuable property in high-impact applications where

interpretability matters, and conscious that the profusion of research on the matter might have

caused confusion and provided little guidance to practitioners, we propose with the present chapter

a comprehensive treatment of state-of-the-art methods for feature selection in ordinary least square

and logistic regression, and make the following contributions for solving the cardinality constrained

formulation (1) exactly [16, 17]:

• We provide a unified treatment of state-of-the-art methods for feature selection in statistics.

More precisely, we cover the cardinality constrained formulation (1), its Boolean relaxation,

the Lasso formulation and its derivatives, and the MCP and SCAD penalty.

• We formulate the cardinality constrained formulation (1) with general convex loss fuction ` as

a binary convex optimization problem Namely, we show by invoking strong duality that the

following two problems are equivalent

min
w∈Rp

n∑
i=1

`(yi,w
>xi) +

1

2γ
‖w‖22 s.t. ‖w‖0 ≤ k, (2)

min
z∈{0,1}p:z>e6k

max
α∈Rn

−
n∑
i=1

ˆ̀(yi, αi)−
γ

2

p∑
j=1

zjα
>XjX

>
j α, (3)

where ˆ̀(y, ·) is the Fenchel conjugate of `(y, ·) and can be derived explicitely for all problems

of interest (see Table 1). Our result generalizes Bertsimas et al. [18], who only address the case

of OLS regression and make extensive use of the closed-form solution available in this context.
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Our framework, however, extends to cases where a closed-form solution is not available and

includes, in addition to linear regression, logistic regression and SVM among others. Using this

mixed-integer saddle-point formulation, we propose a tractable outer-approximation algorithm

to solve it. Our cutting-plane algorithm scales to data sets for which n and p are in the 10, 000s

and 100, 000s respectively for regression, and 1, 000s and 10, 000s respectively for classification.

• We propose an efficient sub-gradient algorithm to solve the Boolean relaxation of (1) and

provide theoretical rate of convergence for our method. We make our code freely avail-

able as a Julia package named SubsetSelection (https://github.com/jeanpauphilet/

SubsetSelectionCIO.jl). Our algorithm scales to problems with n, p = 100, 000 or n = 10, 000

and p = 1, 000, 000 within minutes, as reported on Table 2, while providing high-quality esti-

mators.

Table 2: Computational time of SS with Tmax = 200 for data sets with large values of n and p,
γ = 2 p/k/maxi ‖xi‖2/n. Due to the dimensionality of the data, computations where performed
on 1 CPU with 250GB of memory. We provide the average computational time (and the standard
deviation) over 10 experiments.

Loss function ` n p k time (in s)

Least Squares 10, 000 100, 000 100 12.90 (0.45)
Least Squares 50, 000 100, 000 100 28.45 (1.83)
Least Squares 10, 000 500, 000 100 33.00 (1.86)
Least Squares 10, 000 500, 000 500 43.00 (0.54)

Hinge Loss 10, 000 100, 000 100 37.26 (0.14)
Hinge Loss 50, 000 100, 000 100 160.73 (0.28)
Hinge Loss 10, 000 500, 000 100 157.09 (1.18)
Hinge Loss 10, 000 500, 000 500 59.74 (0.08)

• We compare the performance of all methods on three metrics of crucial interest in practice:

accuracy - i.e, the proportion of true features which are selected - false detection rate - i.e.,

the proportion of selected features which are not in the true support - and computational

tractability, and in various regimes of noise and correlation.

• In theory, Lasso estimators are only guaranteed to achieve 100% accuracy as n→ +∞ under

the so-called mutual incoherence condition (MIC). In Figure 1, we compare convergence in

accuracy in settings with and without the MIC. We empirically observe what theory dictates:
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Under MIC, the proportion of correct features selected converges to 1 as the sample size

n increases for all methods, in all regimes of noise and correlation. Yet, on this matter,

cardinality constrained and MCP formulations are the most accurate. As soon as MIC fails to

hold however, `1-based estimators are inconsistent and A < 1, while discrete and non-convex

penalties eventually perfectly recover the support.
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Figure 1: Accuracy as n increases, for the CIO (in green), SS (in blue with Tmax = 200), ENet (in
red), MCP (in orange), SCAD (in pink) with OLS loss, under a low noise regime, when the mutual
incoherence condition is satisfied (left panel) or violated (right panel). We average results over 10
data sets.

• In addition, we also observe a convergence in false detection rate, namely the proportion of

irrelevant features selected converging to 0 as the sample size n increases, for some but not all

methods: The convex integer formulation and its Boolean relaxation are the only methods

which demonstrate this behavior in low noise settings, and make the fewest false discoveries in

other regimes. In our experiments (see Figure 2), Lasso-based estimators return at least 80%

of non-significant features. MCP and SCAD have a low but strictly positive false detection

rate (around 15− 30% in our experiments) as n increases and in all regimes.

• In terms of computational time, the integer optimization approach is unsurprisingly the most

expensive option. Nonetheless, the computational cost is only one or two orders of magnitude

higher than other alternatives and remains affordable in many real-world problems, even
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Figure 2: False detection rate FDR as n increases, for the CIO (in green), SS (in blue with
Tmax = 200), ENet (in red), MCP (in orange), SCAD (in pink) with OLS loss under the mutual
incoherence condition. We average results over 10 data sets.

high-dimensional ones. Otherwise, the four remaining codes terminate in time comparable with

the glmnet implementation of the Lasso, that is within seconds for n = 1, 000 and p = 20, 000.

3 A Unified Approach for Mixed-Integer Optimization

In addition to sparse regression, many important problems from the operations research literature

exhibit a logical relationship between continuous variables x and binary variables z of the form “x = 0

if z = 0”. Among others, start-up costs in machine scheduling problems, financial transaction costs,

cardinality constraints and fixed costs in facility location problems exhibit this relationship. Since

the work of Glover [42], this relationship is usually enforced through a “big-M ” constraint of the form

|x| ≤Mz for a sufficiently large constant M > 0. Glover’s work has been so influential that big-M

constraints are now considered as intrinsic components of the initial problem formulations themselves,

to the extent that textbooks in the field introduce facility location, network design or sparse portfolio

problems with big-M constraints by default, although they are actually reformulations of logical

constraints.

We consider optimization problems which unfold over two stages. In the first stage, a decision-

maker activates binary variables, while satisfying resource budget constraints and incurring activation
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costs. Subsequently, in the second stage, the decision-maker optimizes over the continuous variables.

Formally, we consider the problem

min
z∈Z,x∈Rn

c>z + g(x) + Ω(x) s.t. xi = 0 if zi = 0, ∀i ∈ [n], (4)

where Z ⊆ {0, 1}n, c ∈ Rn is a cost vector, g(·) is a generic convex function, and Ω(·) is a convex

regularization function of the following form:

Assumption 3.1. In Problem (4), the regularization term Ω(x) is one of:

• a big-M penalty function, Ω(x) = 0 if ‖x‖∞ ≤M and ∞ otherwise,

• a ridge penalty, Ω(x) =
1

2γ
‖x‖22.

Conceptually, both regularization functions are equivalent to a soft or hard constraint on the

continuous variables x. However, they admit practical differences, as illustrated on a portfolio

selection example on Figure 3: For big-M regularization, there usually exists a finite value M0,

typically unknown a priori, such that if M < M0, the regularized problem is infeasible. Alternatively,

for every value of the ridge regularization parameter γ, if the original problem is feasible then the

regularized problem is also feasible. Consequently, if there is no natural choice of M then imposing

ridge regularization may be less restrictive than imposing big-M regularization. However, for any

γ > 0, the objective of the optimization problem with ridge regularization is different from its

unregularized limit as γ →∞, while for big-M regularization, there usually exists a finite value M1

above which the two objective values match. Yet, in practice, high values of M lead to numerical

instability and provide low-quality bounds [see 5, Section 5].

Observe that the structure of Problem (4) is quite general, as the feasible set Z can capture

known lower and upper bounds on z, relationships between different zi’s, or a cardinality constraint

e>z ≤ k. Moreover, constraints of the form x ∈ X , for some convex set X , can be encoded within

the domain of g, by defining g(x) = +∞ if x /∈ X . As a result, Problem (4) encompasses a large

number of problems from the operations research literature, such as network design, facility location,

sparse regression, and portfolio selection among others.
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(b) Ridge regularization

Figure 3: Optimal allocation of funds between securities as the regularization parameter (M or
γ) increases. Data is obtained from the Russell 1000, with a cardinality budget of 5, a rank−200
approximation of the covariance matrix, a one-month holding period and an Arrow-Pratt coefficient
of 1, as in Bertsimas, Cory-Wright [8]. Setting M < 1

k renders the entire problem infeasible

In this work [9], we provide three main contributions: First, we reformulate the logical constraint

“xi = 0 if zi = 0” in a non-linear way, by substituting zixi for xi in Problem (4). Second, we leverage

the regularization term Ω(x) to derive a tractable reformulation of Problem (4). Finally, by invoking

strong duality, we reformulate Problem (4) as a mixed-integer saddle-point problem, which is solvable

via outer approximation. Precisely, we can summarize our contributions as follows:

• We identify a general class of mixed-integer optimization problems, which encompasses sparse

regression, compressed sensing, sparse portfolio selection, unit commitment, facility location,

network design, binary quadratic optimization, and sparse PCA as special cases.

• For this class of problems, we discuss how imposing either big-M or ridge regularization

accounts for non-linear relationships between continuous and binary variables in a tractable

fashion. In particular, we reformulate Problem (4) as a mixed-integer saddle point problem:

Theorem 3.1. Under some constraint qualification assumption, Problem (4) is equivalent to

the following problem:

min
z∈Z

max
α∈Rn

c>z + h(α)−
n∑
i=1

zi Ω?(αi), (5)

where h(α) := infv g(v)− v>α is, up to a sign, the Fenchel conjugate of g [see 52, Chap. 3.3],

10



and

Ω?(β) := M |β| for the big-M penalty,

Ω?(β) := γ
2β

2 for the ridge penalty.

Theorem 3.1 proves that regularization, either big-M or ridge, controls the convexity and

smoothness of Problem (4), hence its computational tractability.

• We propose a conjunction of general-purpose numerical algorithms to solve Problem (4). The

backbone of our approach is an outer approximation algorithm. Outer-approximation was

proposed by Duran, Grossmann [27] and subsequently generalized by Fletcher, Leyffer [37].

Though slow in their original implementation, decomposition schemes have greatly benefited

from recent improvements in mixed-integer linear solvers in the past decades, beginning with the

branch-and-cut approaches of [63, 75]. In accordance with recent successful implementations

of “modern” decomposition schemes [35, 36], we perform a rich root node analysis and enhance

our algorithm with first-order methods to solve the Boolean relaxations and obtain improved

lower bounds, certifiably near-optimal warm-starts via randomized rounding, and a discrete

local search procedure.

• Finally, we demonstrate empirically that algorithms derived from our framework can outperform

state-of-the-art solvers. For sparse portfolio selection, we solve to provable optimality problems

one order of magnitude larger than previous attempts. On binary quadratic optimization

problems with 100s of variables, we improve the objective value of the returned solution by

5 to 85% respectively, and our edge increases as the problem size increases. On network

design problems, Table 3 reports the best solution found (the lower the better) after one

hour, using CPLEX vs. our numerical blueprint and under both regularizations. From these

results, we make two observations: First, irrespective of the regularization, our algorithm

outperforms CPLEX and returns higher quality solutions. Second, we demonstrate that using

ridge regularization can provide a substantial edge over using the big-M method to reformulate

logical constraints.
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Table 3: Best solution found after one hour on network design instances with m nodes and (1 + p)m
initial edges. We report improvement, i.e., the relative difference between the solutions returned by
CPLEX and the cutting-plane. Values are averaged over five randomly generated instances. For ridge
regularization, we report the “unregularized” objective value, that is we fix z to the best solution
found and resolve the corresponding sub-problem with big-M regularization. A “−” indicates that
the solver could not finish the root node inspection within the time limit (one hour)

Big-M Ridge Overall
m p unit CPLEX Cuts Improv. CPLEX Cuts Improv. Improvement

40 1 ×108 5.53 5.47 1.07% 5.97 5.45 8.74% 1.41%
80 1 ×109 2.99 2.94 1.81% 3.16 2.95 6.78% 1.89%
120 1 ×109 8.38 7.82 6.69% − 7.82 −% 6.86%
160 1 ×1010 1.64 1.54 5.98% − 1.54 −% 6.03%
200 1 ×1010 2.60 2.54 2.33% − 2.26 −% 12.98%

40 2 ×108 4.45 4.38 1.62% 4.76 4.36 8.27% 2.06%
80 2 ×109 2.44 2.31 5.39% 2.46 2.31 5.97% 5.40%
120 2 ×109 6.23 5.89 5.55% − 5.89 −% 5.75%
160 2 ×1011 1.22 1.16 4.74% − 0.71 −% 19.33%
200 2 ×1010 2.06 1.43 30.46% − 1.01 −% 73.43%

40 3 ×108 3.91 3.85 1.58% 4.13 3.85 6.73% 1.78%
80 3 ×109 2.06 1.94 5.76% 2.04 1.94 5.44% 5.85%
120 3 ×109 5.43 5.15 5.31% − 4.2 −% 12.35%

40 4 ×108 3.32 3.28 1.35% 3.53 3.26 7.71% 1.85%
80 4 ×109 1.88 1.77 5.59% − 1.77 −% 5.64%

4 Certifiably Optimal Sparse Inverse Covariance Estimation

In recent years, mixed-integer semidefinite optimization problems (MI-SDP) have received a lot of

attention, for they naturally appear in robust optimization problems with ellipsoidal uncertainty

sets [7] or as reformulations of combinatorial problems [71]. In this chapter, we extend the previous

framework to one fundamental MI-SDP problem in modern multivariate analysis, namely estimating

sparse inverse covariance (precision) matrices. Indeed, applications include undirected Gaussian

graphical models [41], high dimensional discriminant analysis [20], portfolio allocation [30, 34],

complex data visualization [81], amongst many others [see 31, for a review]. For example, in the

context of undirected Gaussian graphical models, estimating the precision matrix corresponds to

inferring the conditional independence structure on the related graphical model; zero entries in the

precision matrix indicate that variables are conditionally independent.

Sparsity of the true precision matrix is a prevailing assumption [86, 19, 51, 29, 66]. In addition to

desirable interpretability, sparsity is often needed for the problem to be well-defined. Indeed, when the
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number of samples n is lower than the space dimension p, the empirical covariance matrix is singular,

and thus cannot be inverted to obtain an estimate of the precision matrix. The most common method

for encouraging sparsity in precision matrix estimation involves solving a `1-regularized maximum

likelihood problem. The problem is convex and can be solved in high dimensions. Though this

approach is tractable, solutions suffer from similar drawbacks as Lasso solutions in linear regression.

Here [13], we address these drawbacks by solving the cardinality constrained optimization problem

for which the `1-regularized problem is a convex surrogate. Since the cardinality constrained problem

parallels the relation the best feature selection problem plays in linear regression with Lasso, we

investigate how methods developed in Chapter 2 could be naturally extended to the MI-SDP case.

However, the sparse inverse covariance estimation problem constitutes a uniquely challenging instance

from a theoretical and computational standpoint due to the semidefinite constraints. The main

contribution of this work is to solve the cardinality constrained problem for problem sizes of interest,

and compare the solutions with current approaches. Namely:

1. We prove that regularization, such as Lasso, is equivalent to a robust optimization version of

inverse covariance estimation for an appropriately chosen uncertainty set, hence generalizing

the seminal result of Banerjee et al. [4] and suggesting that regularization primarily encourages

robustness rather than sparsity.

2. We formulate the cardinality constrained maximum likelihood problem for inverse covariance

estimation as a binary optimization problem. We show that the resulting discrete optimization

problem is non-smooth in general, but that adding a big-M penalty or a ridge regularization

term penalty as in Chapter 3 leads to a smooth convex discrete optimization problem.

3. We propose a combination of outer-approximation algorithm and coordinate-descent methods

to solve this problem. To our knowledge, this is the first time in which such a scheme is used

to solve a mixed-integer nonlinear optimization problem with semidefinite constraints. It is

well-known that problems of this type are notoriously hard to solve, and we observe that our

approach significantly outperforms available mixed-integer nonlinear solvers. An advantage of
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our approach over existing algorithms is that it provides near optimal solutions fast, and a

guarantee on the solutions suboptimality if the method is terminated early.

4. We report computational results with both synthetic and real-world datasets that show that

our proposed algorithm delivers near optimal solutions in a matter of seconds, and provably

optimal solutions in a matter of minutes for p in the 100s and k in the 10s. The algorithm also

provides high-quality solutions to problems in the 1, 000s without proof of optimality.

5. We investigate empirically statistical properties of solutions for the cardinality constrained

problem. In Table 4, we compare the solutions for the two cardinality penalized formulations

with big-M and ridge regularization, with the `1-regularized estimates (Glasso) and the

Meinshausen and Bühlmann’s approximation (MB). We observe that cardinality constrained

estimates recover the sparsity pattern of the true underlying precision matrix (here, ktrue = 199)

with comparable accuracy as state-of-the-art but significantly lower false detection rate and

improved predictive power (as measured by out-of-sample negative log-likelihood −LLtest). In

addition, certifiably optimal covariance matrices are computed within 5 minutes, which, from

a practical standpoint, is an affordable computational burden.

Table 4: Average performance on synthetic data with p = 200, n/p = 1, t = 1% (leading to
ktrue = 199), where the hyper-parameters of each formulation are chosen using the best negative
log-likelihood over a validation set. We report the average performance over 10 instances (and their
standard deviation)

Method Big-M Ridge MB Glasso

k? 199 (0) 199 (0) 796 (0) 796 (0)
A 95.1% (0.8) 95.1% (0.8) 99.6% (0.2) 99.5% (0.2)
FDR 4.9% (0.8) 4.9% (0.8) 67.9% (0.3) 75.1% (0.1)
−LLtest 141.39 (3.05) 141.37 (3.05) 157.11 (2.47) 162.05 (1.89)
Time (in s) 352.87 (11.12) 203.36 (39.00) 1.10 (0.04) 3.97 (0.31)
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5 Predicting Inpatient Flow at a Major Hospital Using Interpretable

Analytics

Healthcare offers a rewarding and impactful range of applications for analytics and operations

research. For instance, combining patient-level information from Electronic Health Records (EHRs)

with sophisticated predictive analytics can provide welcome visibility on patient flows and inform

hospital operations. Such is the ambition of the present chapter.

In this chapter, we focus our attention on inpatients, namely patients who are admitted at the

hospital and occupy a bed in an inpatient unit. For this population, patient flows can be divided

into two categories: flows out of the hospital, i.e., discharges, and flows between units of the hospital.

At a hospital level, a collection of work [49, 88, 54, 57] applied time-series methods to predict daily

discharge volume. At a patient level, predicting discharge is associated with predicting length of

stay. Being a surrogate for negative clinical outcomes as well as operational performance, length

of stay has received a vivid interest in the academic literature, often in combination with hospital

mortality (see [77, 84, 65, 68], and [2] for a review). Discharge destination, i.e., where the patient

will be discharged to, is another important component of the discharge process. Regarding patient

flows between units, the most critical ones are flows to and out of intensive care units (ICUs), for

ICUs are expensive and limited resources needed by the most severe patients. In this work, we

cover a range of patient flow-related predictive tasks, including predicting imminent discharges, long

length of stay, discharge destination and hospital mortality, and need for an ICU bed in the next 24

hours. To the best of our knowledge, this last question has not been studied in the literature yet.

Despite the profusion of research and increasing availability of data in healthcare, predictive

models are not widely deployed in practice, mainly due to the need to create custom dataset with

specific variables for each predictive task. To address this issue, Nguyen et al. [61], Miotto et al.

[59], Rajkomar et al. [65] proposed automatized patient representation strategies which analyze

EHRs and construct relevant features in an unsupervised way using autoencoder neural networks.

Since these approaches do not require an expert to manually define features, they are allegedly more
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scalable. Surprisingly, however, and to the best of our knowledge, none of these approaches has

been integrated within an EHR system of a real-world hospital despite their excellent predictive

power on retrospective studies, including the most recent one [65]. In our opinion, they undermined

three major implementation bottlenecks. First of all, the black-box nature of deep learning models

impedes adoption from doctors and caregivers which are not engaged in the modeling process.

Secondly, deep learning approaches are extremely expensive in terms of data, human and computing

resources, and environmental costs [74]. Finally, convolutional and recurrent neural network are

excellent at handling unstructured data such as medical notes. However, in practice, notes are rarely

available in real-time and raise data privacy issues, especially if third-party computational resources

are needed. Consequently, we believe they are better suited for retrospective clinical studies than

production-ready real-time analytics.

In this chapter [15], we demonstrate how tailored modeling can be used in combination with

interpretable machine learning techniques to provide accurate predictions on critical aspects of

patient flows. To the best of our knowledge, our study is first of its kind to (a) address the length

of stay and discharge destination prediction task for such a generic inpatient population with a

unified data modeling and processing, (b) achieve state-of-the-art accuracy with a broad collection of

models, including interpretable ones, (c) be fully integrated into the EHR system of a major hospital,

thus demonstrating how powerful analytics can concretely impact care delivery. Specifically, our

contributions can be summarized as follows:

• We propose a simple expertise-driven patient representation framework to capture the state

of each inpatient as she stays in the hospital, competitive with the deep learning approaches

recently proposed in the literature [61, 59, 65]. Compared to previous work, we use a hospital-

centric rather than patient-centric time scale and only use features which are reliably available

after admission, on a daily basis. Consequently, we successfully implement and integrate our

patient representation into an EHR system and now process the data of 600 patients daily.

• From this unique set of features, we apply a broad collection of machine learning techniques
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to address four length of stay-related tasks: identify same-day and next-day discharges and

predict more-than-7 and more-than-14-day stays. We then investigate the question of predicting

discharge destination among home, home with services, extended care facility and death. We

also predict the probability for a given patient to need an intensive care bed in the next 24

hours. For all tasks, we match or surpass state-of-the-art methods with out-of-sample accuracy

in the 80%+ range, even without using raw medical notes. Table 5 reports the fraction of

these results corresponding to length of stay-related tasks. Sparse linear models and decision

trees provide very good predictive power, together with actionable insights to practitioners

thanks to their interpretability.

Table 5: Summary of the results on predicting length of stay (overall and remaining) for logistic
regression (LR), CART decision trees (CART), optimal trees with parallel splits (OT), random forest
(RF) and gradient boosted trees (GBT). MAE = Median Absolute Error. MRE = Median Relative
Error.

LR CART OT RF GBT
Classification: remaining length of stay < 1 day

AUC 0.826 0.807 0.810 0.843 0.839
MAE in # daily discharges, no. 8.6 6.0 6.4 6.2 7.8
MRE in # daily discharges, % 8.7 6.0 6.5 5.8 7.6
Out-of-sample R2 0.730 0.868 0.847 0.841 0.804
Classification: remaining length of stay < 2 days

AUC 0.809 0.786 0.790 0.815 0.822
Classification: overall length of stay < 7 days

AUC 0.818 0.775 0.776 0.813 0.820
AUC at day 1 0.827 0.795 0.797 0.828 0.830
AUC at day 2 0.807 0.752 0.752 0.800 0.804
Classification: overall length of stay < 14 days

AUC 0.826 0.777 0.777 0.820 0.794

• The successful integration of our models into the EHR system of a large medical institution

constitutes a salient characteristic and major achievement of our work. Figure 4 displays the

machine learning-informed dashboard we built for bed management at BIDMC. In our opinion,

our successful implementation illustrates that emphasis on modeling and interpretability does

not hinder predictive accuracy nor scalability. On the contrary, the variety of predictive tasks we

cover, with high level of accuracy, demonstrates that an expertise-driven patient representation

framework can be equally powerful and versatile as neural network approaches. In addition, it
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leads to more interpretable features, achieves higher engagement from the clinicians and care

providers, and requires less data and computational resources. As a result, we were able to

conduct the project from initial data exploration to production-level deployment in less than

twelve months.

Figure 4: Screenshot of the capacity prediction tool built for the office of bed management. The
dashboard displays a list of all the hospital wards with census level, expected number of discharges
and expected number of ICU patients by the end of the day

• Finally, our work led to substantial operational benefits for the hospital. When it comes

to predicting discharges, our models achieve a significantly lower median relative error than

estimates obtained from inquiring resource nurses directly (11.5% vs. 16.0%). In addition

to being less accurate, asking resource nurses of each floor about their daily predictions is a

tedious process and is very sensitive to discrepancy in experience between nurses. From an
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operational perspective, we analyze the impact of our models on admission delays of patient

from the Emergency Department (ED) and off-service placement. A difference-in-differences

analysis, reported in Table 6, reveals a significant reduction in off-service placement thanks to

our tool (by 4%). Less significantly, we also observe a negative effect on (i.e., a reduction in)

boarding delays.

Table 6: Difference-in-differences analysis of boarding delays and off-service placement between April
and July 2019. Our predictive analytics were implemented in May-June 2019. We use April and
July 2018 as control data. The variable “2019 indicator” captures the changes in activity between
2018 and 2019, “July indicator” captures the monthly seasonality between April and July, and “2019
indicator × July indicator” captures the effect of our intervention. We report estimates for each
coefficient (with standard errors) and level of significance (“ ”, “< 0.1”, “< 0.01” and “< 0.001”).

Boarding delay Off-service placement
Coefficient p-value Coefficient p-value

2019 indicator 0.231 (0.122) < 0.1 0.053 (0.012) < 0.001
July indicator 0.442 (0.115) < 0.001 0.032 (0.011) < 0.01
2019 indicator × July indicator -0.120 (0.174) -0.043 (0.017) < 0.01

Controls: day-of-the-week, hour of the day; Observations: 5, 126

6 Hospital-wide Patient Flow Optimization

To convert predictions on future patient discharges and flows, as developed in the previous chapter,

into actionable bed placement recommendations, and improve operational efficiency of hospitals

even further, one needs to develop “a system-wide approach to patient flow” [67]. In this chapter, we

propose a holistic optimization approach combined with machine learning techniques to achieve this

goal. Based on historical data from a large academic hospital, we demonstrate that our approach can

be implemented in a real-world environment and effectively reduces delays and patient misplacement.

A central performance metric in patient flow management is delays. Indeed, delays can be used as

a measure of operational efficiency as well as quality of care. Empirical work suggests that prolonged

ED boarding time - the time needed for a patient in the ED to be admitted to an inpatient bed - is

associated with negative health outcomes [56, 22]. Prolonged ED boarding time is usually due to

unavailability of inpatient beds [69]. Consequently, better understanding and modeling of discharge
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patterns are needed as well [69, 21, 26, 25]. Besides the ED, Johnson et al. [47], Long, Mathews

[53], Oliveira et al. [62] empirically measure the negative consequences of prolonged intensive care

unit (ICU) boarding. Finally, Green [43] surveys the potential for OR techniques in reducing hospital

delays, with an emphasis on queueing models.

A general insight of queueing theory is also that resource pooling might produce better perfor-

mance. Due to heterogenity in patient needs however, empirical studies have found that pooling

resources in the ED can be detrimental to the patient, by increasing mortality [73, 3], readmission

risk [72, 70], or overall length-of-stay [1, 72, 70]. Indeed, in an inpatient context, pooling resources

leads to patient misplacement, also called off-service placement or patient overflow. Off-service

placement occurs when an incoming patient is placed in a unit designated for a different service than

the service required by her condition. Another related phenomenon is off-level placement [50, 23],

that is, when a patient needing an ICU is placed in a general care unit.

As far as ED boarding is concerned, there is a trade-off between waiting in the ED for the right

bed to become available and immediately placing the patient in another service. Thompson et al.

[79], Kilinc et al. [48], Dai, Shi [24] explore this trade-off using a queueing framework and a Markov

decision process model. However, as the authors acknowledge, their analysis does not scale to large

medical institutions and can only be applied to a restricted number of units. Also, they do not

account for inter-unit transfers of inpatients.

Our present chapter [14] falls into this last line of work but differs substantially in terms of

scope and methodology: First, we adopt a holistic approach to optimize bed assignment decisions

simultaneously for all inpatient units. To the best of our knowledge, no study has previously addressed

the question in such breadth. Secondly, we build our analysis on data rather than stochastic modeling

and distributional assumptions. Given the data rich environment that hospitals have become, we

believe that queueing models are less meaningful, especially due to their stringent assumptions and

the curse of dimensionality they suffer from. Finally, we integrated of our model into the EHR of a

600-bed hospital. Our solution is undergoing final calibration and testing before full implementation

at the hospital by the end of the year. Our contributions can be summarized as follows:
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1. We consider the entirety of the hospital and optimize patient flows at a system level, while

previous work mostly focused on isolated units or a sub-network comprised of the ED and some

inpatient wards. Our approach not only accounts for admission of ED patients to inpatient

beds but also for outside transfers, surgical patients boarding from the post-anesthesia care

units (PACUs), and patient flows within inpatient units. Figure 5 sketches the main patient

flows accounted for in our framework.

Waiting Units

OR

T

ED

Inpatient Units

GC

IC

Discharge Unit

D

Figure 5: Schematic views of patient flows in a typical hospital. New requests for beds can either
come from surgeries or scheduled admissions (OR), the emergency department (ED) or transfers
from another institution (T). Inpatient units are characterized by their medical specialty or service,
and their level of care. We present here two levels of care, namely intensive care (IC) and general
care (GC). For simplicity, we model discharges through admission to a single virtual discharge unit
(D), although multiple discharge destinations are possible.

2. We describe the location of each patient individually using integer decision variables, as opposed

to stochastic queueing models which, at scale, rely on fluid model assumptions that dissolve

individual movements into continuous flows. This distinction is relevant in practice because of

tight capacity constraints which make each unit of capacity matter.

3. From a modeling perspective, we associate each patient with two locations, namely a physical

location corresponding to the hospital unit she physically is, and a virtual location corresponding

to the unit she should be in given her clinical need. Correspondingly, we can divide patient

flows into two categories: Physical patient flows, which result from hospital management

decisions to accept, place and discharge patients; Clinical flows, which are uncertain quantities.
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This perspective has the double advantage of being simple and dissociating the operational

from the clinical decision-making process, the later being modeled as an uncertain quantity

driven by each patient’s condition rather than a decision variable.

4. To account for uncertainty in the clinical trajectories, we integrate predictions obtained from

machine learning techniques into an overall robust optimization formulation. While queueing

models have been successfully used to model patient flows at a unit level, stochastic analysis of

patients flows for hospital-wide bed assignment might be intractable due to non-stationarity of

the arrival and departure processes, intricate network structure between the different units, soft

pre-assignment rules of services to units, and high dimensions. In this work, we use outputs

from machine learning models to build data-driven uncertainty sets for patients’ clinical flows.

Table 7 summarizes the main key clinical flows we are predicting, the models we used and

their respective out-of-sample accuracy.

Table 7: Out-of-sample performance for all patient-flow prediction tasks, on their respective test
set. We use optimal classification trees (OCT) [10] for classification tasks and regularized regression
(Lasso) [80] for regression tasks

Patient category Prediction task Method Metric Value

Inpatients

Probability of discharge OCT AUC 0.810

Daily discharges OCT Median relative error 6.0%
R2 0.847

Probability of intensive care OCT AUC 0.973

ICU census OCT Median relative error 11.1%
R2 0.998

ED Bed requests Lasso
Median absolute error 3.67
Median relative error 14.0%
R2 0.910

Transfers Bed requests Lasso
Median absolute error 1.19
Median relative error 58.1%
R2 0.805

5. In this framework, the optimal bed allocation decisions can be formulated as minimizing the

mismatch between the physical flows (decisions) and the clinical ones (uncertainty), and leads

to a tractable mixed-integer robust optimization problem, which we will later refer to as (H2O).

To the best of our knowledge, this formulation is novel, simple, and captures many of the

22



operational deficiencies observed empirically such as boarding delays and off-service placement.

While robust optimization has been previously applied to hospital operations [46, 58], our

work constitutes, to the best of our knowledge, the first implementation of adaptive robust

techniques in this setting.

6. Finally, we demonstrate that our proposed formulation is tractable and leads to significant

operational benefit. On data from a 600-bed medical center over 7 months, we solve the adaptive

robust optimization problems in seconds and provide a bed assignment policy which reduces

off-service placement by 33% on average, boarding delays in the emergency departments

and post-anesthesia units by 30% and 19% respectively, while keeping overall occupation

constant. Figure 6 summarizes the relative improvement of (H2O) over the current bed

assignment strategy for four metrics. Although there is a clear trade-off between quality of

the bed assigned and time waited for the assignement, our simulations suggest that there is

an opportunity for hospitals to improve on both aspects simultaneously compared to how

they currently operate, by leveraging advanced prescriptive analytics. On this regard, we

also demonstrate the additional benefit from using linear decision rules that allow for a more

effective and flexible trade-off between waiting time and off-service placement, as displayed on

Figure 7.

7 Conlusions

In this thesis, we have illustrated how interpretable machine learning and hospital operations can

benefit from improvements in large-scale discrete optimization.

The first part provides two main contributions: From a modeling perspective, the use of ridge

regularization, that is a non-linear yet strongly convex term, to encode logical relationships between

continuous and discrete variables. From an algorithmic perspective, a generic cutting-plane strategy

to numerically solve mixed-integer optimization problems at scale. Chapter 3 formally presents the

class of problems that can be addressed with our framework, together with theoretical analysis and
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Figure 6: Boxplot for the distribution of the relative difference between the (H2O) policy over the
historical bed assignment decisions in terms of four performance metrics: (from left to right) ED
wait, number of ED patients waiting more than 2 hours, OR wait, number of off-service placements.
Negative values indicate a reduction, hence an improvement.

numerical experiments on many special cases. Chapter 2 focuses on sparse empirical minimization

and exploits extra problem structure to design an efficient first-order heuristic. Future research

could explore how our general blueprint can be tailored to other specific problem structures. We also

believe that numerical ingredients like multi-threading, warm-starts, and cut sharing, could improve

the implementation of the cutting-plane algorithm even further and ought to be investigated in

the future. In Chapter 4, we extend this framework to a special case of mixed-integer semidefinite

optimization. In our opinion, our approach could benefit an even broader class of problems in

mixed-integer semidefinite and rank constrained optimization.

The second part covers the application and implementation of machine learning and discrete

optimization techniques to first predict (Chapter 5) and then optimize (Chapter 6) patient flows at

a large academic hospital. From our experience, we draw three conclusions: First, that data and

technology already available can lead to significant operational improvement. Second, that modeling

constitutes the main implementation bottleneck for practitioners. While data and computing

resources become commodities, hospital managers increasingly need data-driven models that capture

the majority of their daily operations and scale to the size of their system. This constitutes, in our

opinion, the most promising direction for future research in the field. Finally, that optimization
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Figure 7: Trade-off waiting time in the emergency department vs. off-service placements. All
quantities are relative values compared with historical placements. We compare the performance of
the proposed robust affine policies (blue circles) with the static solution (pink diamonds).

is crucial to translate estimates into actionable insights and impact, as machine learning pervades

EHRs and provides more predictions than what can be reasonably handled by humans.

Our main objective in this work has been to develop predictive and prescriptive analytics in

collaboration with a medical institution. Unfortunately, research - even operations research - is

often considered as disconnected from real-world problems, which rarely benefit from the research

they supposedly motivated. On the other hand, calibration alone does not constitute a scientific

contribution. So, defining how to properly value implementation in academic research remains an

open question and a critical challenge for our community. We hope this thesis could contribute to our

collective answer. It illustrates, we believe, fruitful synergies between academia and industry, with

equal emphasis on methodological advancements that are relevant in practice and methodologically

grounded applied operations research.
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